你知不知道,当年美国人的阿波罗登月计划结束之后,剩下20瓶没用过的月球土壤,美国航天局根本没当回事,一直随处乱丢。很快就消失得无影无踪,最后还是被收垃圾的人从一个废弃仓库里给翻了出来。
整个阿波罗登月计划,总共也就带回来了那么几百公斤的月岩和月尘样本。事后的处置尚且如此。你这次弄了几十吨月岩和月尘回来,整个航天局上下已经全都懵了啊!除了拿出几吨样品派发给各地研究所和大学之外,已经有人在讨论要用多余月尘烧玻璃做工艺品,颁发给航天部门职员当纪念章来用啦!”
“……用月尘烧玻璃?这也太糟蹋了!简直是在暴敛天物啊!”王秋一时间听得都愣住了。“……不是说月尘里面含有比黄金还要昂贵的氦3。可以提炼出来作为核聚变发电的原料嘛!”
“……这个氦3的国际市场价格,确实是比黄金还要昂贵没错。”
对于这个问题,王美玲显然是做足了功课,所以在点了点头之后,又话锋一转,“……但在这些月尘之中含有的氦3,也就像天然矿石里的黄金一样含量稀少啊!而且,且不说你弄来的这些月尘里面。究竟含有多少氦3的成分,就算是真的弄来了很多的氦3。你又打算卖给谁?需要它客户和市场到底在哪里?
别忘了,真正能够用到这玩意儿的核聚变发电技术,目前还只是一个实验室中的设想连鱼缸和金鱼都没弄到,你搞一大堆金鱼饲料回来有啥意思啊?领先时代半步是天才,领先时代一步可就是疯子啦!”
从三十六万公里之外弄来的月尘和月岩,对地球上的人类而言究竟有什么用途?
嗯,严格来说,这似乎是一个非常令人纠结的问题。
从化学成分上来说,月岩的构成和地球上的岩石相比,并观点,月球不过是从早期地球分离出来的一部分,而不是什么传说中的“黄金星球”或“钻石星球”。
至于月尘,也不过是一堆棱角锋利如玻璃、经受了千百万年紫外线辐she的超微细尘土颗粒在地球上,我们能够看到的沙砾早已在水汽循环之中,被水的力量打磨得边角圆润。但在真空的月球之中,月尘却依然保持着它们刚刚诞生之时的锐利……可是除了外观之外,这两者的化学成分其实也没有太大的差异。
接下来,根据有关专家分析得出的数字,从矿物学的角度来看,月球可以说是一个巨大的聚宝盆。月球岩石中含有地球中全部元素和60种左右的矿物,其中6种矿物是地球没有的。稀有金属的储藏量比地球还多。地球上最常见的17种元素,月球上比比皆是。以铁为例,仅月面表层5厘米厚的沙土中,就含有上亿吨铁。月球表层的铁不仅异常丰富,而且品相甚好,便于开采和冶炼。此外,在月海的玄武岩中,还蕴藏着丰富的钛、钾、稀土元素、磷等资源。以及一些钍、铀等放矿物。
嗯,粗看起来,这一切似乎相当美好。但是,众所周知,即使是在地球上的富铜矿和富金矿区,也不可能拣起一块石头就是铜锭和金块,而是要投入很大的花费和劳动量,进行繁琐复杂的筛选、提纯和冶炼,才能得到上述最终产品。如果矿脉的品质不好,或者国际市场价波动太大,那么即使最终获得了一批铜锭和金块,恐怕也会有亏本破产的危险。
同样的道理,月球上的这些矿产,也不可能像是抓娃娃机里的洋娃娃一样,全都被不知哪一路神明给预先冶炼成金属锭,跟奖品似地一块块丢在月面。只等着登月飞船前来捡取而是跟地面上的矿山一样,被混杂在一条条矿脉之中,埋在深深的地下和山腹。需要宇航员用铁锹和风镐把它们凿出来,然后进行高温冶炼……这开采成本简直高昂得让人无法想象。即使发现了金矿,想要开采它们恐怕也是要亏本的。
再接下来,就该谈一谈在近年来很热门的月球新能源,蕴藏在月面土壤之中的氦3了。
确实,对于号称能解决21世纪人类社会能源问题的核聚变发电技术而言,氦3是一种非常理想的核聚变材料。以及一种非常干净的未来能源利用氘和氦3进行的氦聚变,发电效能据称超过石油的一千万倍,故而可以作为未来核聚变电站的理想能量源。
跟其他的核聚变相比。使用氦3进行的核聚变要求的温度很低,基本不产生中子和辐she,安全无污染,无需对反应炉进行隔绝辐she处理。而带电粒子也更容易转换为电流。优点相当明显。
根据航天和能源专家的设想,像这样轻便、高效、容易维护的核聚变装置,不仅可用于地面核电站,而且特别适合用于空间紧凑的宇宙航行。
总之,氦3作为最有潜力的新能源,已经成为了世界各国新能源研究领域的重要课题。
唯一麻烦的地方就是,氦3这种东西在地球上非常稀少,据说整个地球上的总储量也只有几百公斤从产生的源头上追溯。氦3是太阳进行核聚变反应时所产生的某种副产品,然后随这太阳风吹向各大行星。在地球上